首页 今日更新正文

电工技师论文100篇(电工技师论文)

今日更新 2024-06-07 12:09:42
导读 电工技师论文 变频器在使用中遇到的问题和故障防范由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足...

电工技师论文 变频器在使用中遇到的问题和故障防范由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。

为防患于未然,事先对故障原因进行认真分析显得尤为重要。

外部的电磁感应干扰 如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。

提高变频器自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,消除干扰源显得更合理、更必要。

以下几项措施是对噪声干扰实行“三不”原则的具体方法:变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压的吸收装置,如RC吸收器;尽量缩短控制回路的配线距离,并使其与主线路分离;指定采用屏蔽线回路,须按规定进行,若线路较,应采用合理的中继方式;变频器接地端子应按规定进行,不能同电焊、动力接地混用;变频器输入端安装噪声滤波器,避免由电源进线引入干扰。

安装环境, 电源异常, 雷击、感应雷电, 电源高次谐波 1, 安装环境 变频器属于电子器件装置,在其规格书中有详细安装使用环境的要求。

在特殊情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施:振动是对电子器件造成机械损伤的主要原因,对于振动冲击较大的场合,应采用橡胶等避振措施;潮湿、腐蚀性气体及尘埃等将造成电子器件生锈、接触不良、绝缘降低而形成短路,作为防范措施,应对控制板进行防腐防尘处理,并采用封闭式结构;温度是影响电子器件寿命及可靠性的重要因素,特别是半导体器件,应根据装置要求的环境条件安装空调或避免日光直射。

除上述3点外,定期检查变频器的空气滤清器及冷却风扇也是非常必要的。

对于特殊的高寒场合,为防止微处理器因温度过低不能正常工作,应采取设置空间加热器等必要措施。

2, 电源异常 电源异常表现为各种形式,但大致分以下3种,即缺相、低电压、停电,有时也出现它们的混和形式。

这些异常现象的主要原因多半是输电线路因风、雪、雷击造成的,有时也因为同一供电系统内出现对地短路及相间短路。

而雷击因地域和季节有很大差异。

除电压波动外,有些电网或自行发电单位,也会出现频率波动,并且这些现象有时在短时间内重复出现,为保证设备的正常运行,对变频器供电电源也提出相应要求。

如果附近有直接起动电动机和电磁炉等设备,为防止这些设备投入时造成的电压降低,应和变频器供电系统分离,减小相互影响;对于要求瞬时停电后仍能继续运行的场合,除选择合适价格的变频器外,还因预先考虑负载电机的降速比例。

变频器和外部控制回路采用瞬停补偿方式,当电压回复后,通过速度追踪和测速电机的检测来防止在加速中的过电流;对于要求必须量需运行的设备,要对变频器加装自动切换的不停电电源装置。

二极管输入及使用单相控制电源的变频器,虽然在缺相状态也能继续工作,但整流器中个别器件电流过大及电容器的脉冲电流过大,若长期运行将对变频器的寿命及可靠性造成不良影响,应及早检查处理。

3, 雷击、感应雷电 雷击或感应雷击形成的冲击电压有时也能造成变频器的损坏。

此外,当电源系统一次侧带有真空断路器时,短路器开闭也能产生较高的冲击电压。

变压器一次侧真空断路器断开时,通过耦合在二次侧形成很高的电压冲击尖峰。

为防止因冲击电压造成过电压损坏,通常需要在变频器的输入端加压敏电阻等吸收器件,保证输入电压不高于变频器主回路期间所允许的最大电压。

当使用真空断路器时,应尽量采用冲击形成追加RC浪涌吸收器。

若变压器一次侧有真空断路器,因在控制时序上保证真空断路器动作前先将变频器断开。

过去的晶体管变频器主要有以下缺点:容易跳闸、不容易再起动、过负载能力低。

由于IGBT及CPU的迅速发展,变频器内部增加了完善的自诊断及故障防范功能,大幅度提高了变频器的可靠性。

如果使用矢量控制变频器中的“全领域自动转矩补偿功能”,其中“起动转矩不足”、“环境条件变化造成出力下降”等故障原因,将得到很好的克服。

该功能是利用变频器内部的微型计算机的高速运算,计算出当前时刻所需要的转矩,迅速对输出电压进行修正和补偿,以抵消因外部条件变化而造成的变频器输出转矩变化。

此外,由于变频器的软件开发更加完善,可以预先在变频器的内部设置各种故障防止措施,并使故障化解后仍能保持继续运行,例如:对自由停车过程中的电机进行再起动;对内部故障自动复位并保持连续运行;负载转矩过大时能自动调整运行曲线,避免Trip;能够对机械系统的异常转矩进行检测。

变频器对周边设备的影响及故障防范 变频器的安装使用也将对其他设备产生影响,有时甚至导致其他设备故障。

因此,对这些影响因素进行分析探讨,并研究应该采取哪些措施时非常必要的。

4,电源高次谐波 由于目前的变频器几乎都采用PWM控制方式,这样的脉冲调制形式使得变频器运行时在电源侧产生高次谐波电流,并造成电压波形畸变,对电源系统产生严重影响,通常采用以下处理措施:采用专用变压器对变频器供电,与其它供电系统分离;在变频器输入侧加装滤波电抗器或多种整流桥回路,降低高次谐波分量,对于有进相电容器的场合因高次谐波电流将电容电流增加造成发热严重,必须在电容前串接电抗器,以减小谐波分量,对电抗器的电感应合理分析计算,避免形成 LC振荡。

电动机温度过高及运行范围 对于现有电机进行变频调速改造时,由于自冷电机在低速运行时冷却能力下降造成电机过热。

此外,因为变频器输出波形中所含有的高次谐波势必增加电机的铁损和铜损,因此在确认电机的负载状态和运行范围之后,采取以下的相应措施:对电机进行强冷通风或提高电机规格等级;更换变频专用电机;限定运行范围,避开低速区。

5, 振动、噪声 振动通常是由于电机的脉动转矩及机械系统的共振引起的,特别是当脉动转矩与机械共振电恰好一致时更为严重。

噪声通常分为变频装置噪声和电动机噪声,对于不同的安装场所应采取不同的处理措施:变频器在调试过程中,在保证控制精度的前提下,应尽量减小脉冲转矩成分;调试确认机械共振点,利用变频器的频率屏蔽功能,使这些共振点排除在运行范围之外;由于变频器噪声主要有冷却风扇机电抗器产生,因选用低噪声器件;在电动机与变频器之间合理设置交流电抗器,减小因PWM调制方式造成的高次谐波。

6,高频开关形成尖峰电压对电机绝缘不利 在变频器的输出电压中,含有高频尖峰浪用电压。

这些高次谐波冲击电压将会降低电动机绕组的绝缘强度,尤其以PWM控制型变频器更为明显,应采取以下措施:尽量缩短变频器到电机的配线距离;采用阻断二极管的浪涌电压吸收装置,对变频器输出电压进行处理. 变频器在使用中遇到的问题和故障防范 由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。

为防患于未然,事先对故障原因进行认真分析显得尤为重要。

外部的电磁感应干扰 如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。

提高变频器自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,消除干扰源显得更合理、更必要。

以下几项措施是对噪声干扰实行“三不”原则的具体方法:变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压的吸收装置,如RC吸收器;尽量缩短控制回路的配线距离,并使其与主线路分离;指定采用屏蔽线回路,须按规定进行,若线路较,应采用合理的中继方式;变频器接地端子应按规定进行,不能同电焊、动力接地混用;变频器输入端安装噪声滤波器,避免由电源进线引入干扰。

安装环境, 电源异常, 雷击、感应雷电, 电源高次谐波 1, 安装环境 变频器属于电子器件装置,在其规格书中有详细安装使用环境的要求。

在特殊情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施:振动是对电子器件造成机械损伤的主要原因,对于振动冲击较大的场合,应采用橡胶等避振措施;潮湿、腐蚀性气体及尘埃等将造成电子器件生锈、接触不良、绝缘降低而形成短路,作为防范措施,应对控制板进行防腐防尘处理,并采用封闭式结构;温度是影响电子器件寿命及可靠性的重要因素,特别是半导体器件,应根据装置要求的环境条件安装空调或避免日光直射。

除上述3点外,定期检查变频器的空气滤清器及冷却风扇也是非常必要的。

对于特殊的高寒场合,为防止微处理器因温度过低不能正常工作,应采取设置空间加热器等必要措施。

2, 电源异常 电源异常表现为各种形式,但大致分以下3种,即缺相、低电压、停电,有时也出现它们的混和形式。

这些异常现象的主要原因多半是输电线路因风、雪、雷击造成的,有时也因为同一供电系统内出现对地短路及相间短路。

而雷击因地域和季节有很大差异。

除电压波动外,有些电网或自行发电单位,也会出现频率波动,并且这些现象有时在短时间内重复出现,为保证设备的正常运行,对变频器供电电源也提出相应要求。

如果附近有直接起动电动机和电磁炉等设备,为防止这些设备投入时造成的电压降低,应和变频器供电系统分离,减小相互影响;对于要求瞬时停电后仍能继续运行的场合,除选择合适价格的变频器外,还因预先考虑负载电机的降速比例。

变频器和外部控制回路采用瞬停补偿方式,当电压回复后,通过速度追踪和测速电机的检测来防止在加速中的过电流;对于要求必须量需运行的设备,要对变频器加装自动切换的不停电电源装置。

二极管输入及使用单相控制电源的变频器,虽然在缺相状态也能继续工作,但整流器中个别器件电流过大及电容器的脉冲电流过大,若长期运行将对变频器的寿命及可靠性造成不良影响,应及早检查处理。

3, 雷击、感应雷电 雷击或感应雷击形成的冲击电压有时也能造成变频器的损坏。

此外,当电源系统一次侧带有真空断路器时,短路器开闭也能产生较高的冲击电压。

变压器一次侧真空断路器断开时,通过耦合在二次侧形成很高的电压冲击尖峰。

为防止因冲击电压造成过电压损坏,通常需要在变频器的输入端加压敏电阻等吸收器件,保证输入电压不高于变频器主回路期间所允许的最大电压。

当使用真空断路器时,应尽量采用冲击形成追加RC浪涌吸收器。

若变压器一次侧有真空断路器,因在控制时序上保证真空断路器动作前先将变频器断开。

过去的晶体管变频器主要有以下缺点:容易跳闸、不容易再起动、过负载能力低。

由于IGBT及CPU的迅速发展,变频器内部增加了完善的自诊断及故障防范功能,大幅度提高了变频器的可靠性。

如果使用矢量控制变频器中的“全领域自动转矩补偿功能”,其中“起动转矩不足”、“环境条件变化造成出力下降”等故障原因,将得到很好的克服。

该功能是利用变频器内部的微型计算机的高速运算,计算出当前时刻所需要的转矩,迅速对输出电压进行修正和补偿,以抵消因外部条件变化而造成的变频器输出转矩变化。

此外,由于变频器的软件开发更加完善,可以预先在变频器的内部设置各种故障防止措施,并使故障化解后仍能保持继续运行,例如:对自由停车过程中的电机进行再起动;对内部故障自动复位并保持连续运行;负载转矩过大时能自动调整运行曲线,避免Trip;能够对机械系统的异常转矩进行检测。

变频器对周边设备的影响及故障防范 变频器的安装使用也将对其他设备产生影响,有时甚至导致其他设备故障。

因此,对这些影响因素进行分析探讨,并研究应该采取哪些措施时非常必要的。

4,电源高次谐波 由于目前的变频器几乎都采用PWM控制方式,这样的脉冲调制形式使得变频器运行时在电源侧产生高次谐波电流,并造成电压波形畸变,对电源系统产生严重影响,通常采用以下处理措施:采用专用变压器对变频器供电,与其它供电系统分离;在变频器输入侧加装滤波电抗器或多种整流桥回路,降低高次谐波分量,对于有进相电容器的场合因高次谐波电流将电容电流增加造成发热严重,必须在电容前串接电抗器,以减小谐波分量,对电抗器的电感应合理分析计算,避免形成 LC振荡。

电动机温度过高及运行范围 对于现有电机进行变频调速改造时,由于自冷电机在低速运行时冷却能力下降造成电机过热。

此外,因为变频器输出波形中所含有的高次谐波势必增加电机的铁损和铜损,因此在确认电机的负载状态和运行范围之后,采取以下的相应措施:对电机进行强冷通风或提高电机规格等级;更换变频专用电机;限定运行范围,避开低速区。

5, 振动、噪声 振动通常是由于电机的脉动转矩及机械系统的共振引起的,特别是当脉动转矩与机械共振电恰好一致时更为严重。

噪声通常分为变频装置噪声和电动机噪声,对于不同的安装场所应采取不同的处理措施:变频器在调试过程中,在保证控制精度的前提下,应尽量减小脉冲转矩成分;调试确认机械共振点,利用变频器的频率屏蔽功能,使这些共振点排除在运行范围之外;由于变频器噪声主要有冷却风扇机电抗器产生,因选用低噪声器件;在电动机与变频器之间合理设置交流电抗器,减小因PWM调制方式造成的高次谐波。

6,高频开关形成尖峰电压对电机绝缘不利 在变频器的输出电压中,含有高频尖峰浪用电压。

这些高次谐波冲击电压将会降低电动机绕组的绝缘强度,尤其以PWM控制型变频器更为明显,应采取以下措施:尽量缩短变频器到电机的配线距离;采用阻断二极管的浪涌电压吸收装置,对变频器输出电压进行处理. 变频器在使用中遇到的问题和故障防范 由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。

为防患于未然,事先对故障原因进行认真分析显得尤为重要。

外部的电磁感应干扰 如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。

提高变频器自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,消除干扰源显得更合理、更必要。

以下几项措施是对噪声干扰实行“三不”原则的具体方法:变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压的吸收装置,如RC吸收器;尽量缩短控制回路的配线距离,并使其与主线路分离;指定采用屏蔽线回路,须按规定进行,若线路较,应采用合理的中继方式;变频器接地端子应按规定进行,不能同电焊、动力接地混用;变频器输入端安装噪声滤波器,避免由电源进线引入干扰。

安装环境, 电源异常, 雷击、感应雷电, 电源高次谐波 1, 安装环境 变频器属于电子器件装置,在其规格书中有详细安装使用环境的要求。

在特殊情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施:振动是对电子器件造成机械损伤的主要原因,对于振动冲击较大的场合,应采用橡胶等避振措施;潮湿、腐蚀性气体及尘埃等将造成电子器件生锈、接触不良、绝缘降低而形成短路,作为防范措施,应对控制板进行防腐防尘处理,并采用封闭式结构;温度是影响电子器件寿命及可靠性的重要因素,特别是半导体器件,应根据装置要求的环境条件安装空调或避免日光直射。

除上述3点外,定期检查变频器的空气滤清器及冷却风扇也是非常必要的。

对于特殊的高寒场合,为防止微处理器因温度过低不能正常工作,应采取设置空间加热器等必要措施。

2, 电源异常 电源异常表现为各种形式,但大致分以下3种,即缺相、低电压、停电,有时也出现它们的混和形式。

这些异常现象的主要原因多半是输电线路因风、雪、雷击造成的,有时也因为同一供电系统内出现对地短路及相间短路。

而雷击因地域和季节有很大差异。

除电压波动外,有些电网或自行发电单位,也会出现频率波动,并且这些现象有时在短时间内重复出现,为保证设备的正常运行,对变频器供电电源也提出相应要求。

如果附近有直接起动电动机和电磁炉等设备,为防止这些设备投入时造成的电压降低,应和变频器供电系统分离,减小相互影响;对于要求瞬时停电后仍能继续运行的场合,除选择合适价格的变频器外,还因预先考虑负载电机的降速比例。

变频器和外部控制回路采用瞬停补偿方式,当电压回复后,通过速度追踪和测速电机的检测来防止在加速中的过电流;对于要求必须量需运行的设备,要对变频器加装自动切换的不停电电源装置。

二极管输入及使用单相控制电源的变频器,虽然在缺相状态也能继续工作,但整流器中个别器件电流过大及电容器的脉冲电流过大,若长期运行将对变频器的寿命及可靠性造成不良影响,应及早检查处理。

3, 雷击、感应雷电 雷击或感应雷击形成的冲击电压有时也能造成变频器的损坏。

此外,当电源系统一次侧带有真空断路器时,短路器开闭也能产生较高的冲击电压。

变压器一次侧真空断路器断开时,通过耦合在二次侧形成很高的电压冲击尖峰。

为防止因冲击电压造成过电压损坏,通常需要在变频器的输入端加压敏电阻等吸收器件,保证输入电压不高于变频器主回路期间所允许的最大电压。

当使用真空断路器时,应尽量采用冲击形成追加RC浪涌吸收器。

若变压器一次侧有真空断路器,因在控制时序上保证真空断路器动作前先将变频器断开。

过去的晶体管变频器主要有以下缺点:容易跳闸、不容易再起动、过负载能力低。

由于IGBT及CPU的迅速发展,变频器内部增加了完善的自诊断及故障防范功能,大幅度提高了变频器的可靠性。

如果使用矢量控制变频器中的“全领域自动转矩补偿功能”,其中“起动转矩不足”、“环境条件变化造成出力下降”等故障原因,将得到很好的克服。

该功能是利用变频器内部的微型计算机的高速运算,计算出当前时刻所需要的转矩,迅速对输出电压进行修正和补偿,以抵消因外部条件变化而造成的变频器输出转矩变化。

此外,由于变频器的软件开发更加完善,可以预先在变频器的内部设置各种故障防止措施,并使故障化解后仍能保持继续运行,例如:对自由停车过程中的电机进行再起动;对内部故障自动复位并保持连续运行;负载转矩过大时能自动调整运行曲线,避免Trip;能够对机械系统的异常转矩进行检测。

变频器对周边设备的影响及故障防范 变频器的安装使用也将对其他设备产生影响,有时甚至导致其他设备故障。

因此,对这些影响因素进行分析探讨,并研究应该采取哪些措施时非常必要的。

4,电源高次谐波 由于目前的变频器几乎都采用PWM控制方式,这样的脉冲调制形式使得变频器运行时在电源侧产生高次谐波电流,并造成电压波形畸变,对电源系统产生严重影响,通常采用以下处理措施:采用专用变压器对变频器供电,与其它供电系统分离;在变频器输入侧加装滤波电抗器或多种整流桥回路,降低高次谐波分量,对于有进相电容器的场合因高次谐波电流将电容电流增加造成发热严重,必须在电容前串接电抗器,以减小谐波分量,对电抗器的电感应合理分析计算,避免形成 LC振荡。

电动机温度过高及运行范围 对于现有电机进行变频调速改造时,由于自冷电机在低速运行时冷却能力下降造成电机过热。

此外,因为变频器输出波形中所含有的高次谐波势必增加电机的铁损和铜损,因此在确认电机的负载状态和运行范围之后,采取以下的相应措施:对电机进行强冷通风或提高电机规格等级;更换变频专用电机;限定运行范围,避开低速区。

5, 振动、噪声 振动通常是由于电机的脉动转矩及机械系统的共振引起的,特别是当脉动转矩与机械共振电恰好一致时更为严重。

噪声通常分为变频装置噪声和电动机噪声,对于不同的安装场所应采取不同的处理措施:变频器在调试过程中,在保证控制精度的前提下,应尽量减小脉冲转矩成分;调试确认机械共振点,利用变频器的频率屏蔽功能,使这些共振点排除在运行范围之外;由于变频器噪声主要有冷却风扇机电抗器产生,因选用低噪声器件;在电动机与变频器之间合理设置交流电抗器,减小因PWM调制方式造成的高次谐波。

6,高频开关形成尖峰电压对电机绝缘不利 在变频器的输出电压中,含有高频尖峰浪用电压。

这些高次谐波冲击电压将会降低电动机绕组的绝缘强度,尤其以PWM控制型变频器更为明显,应采取以下措施:尽量缩短变频器到电机的配线距离;采用阻断二极管的浪涌电压吸收装置,对变频器输出电压进行处理. 搜索更多相关主题的帖子: 技师论文 电工技师论文 电工技师  中国写手联盟是支付宝诚信商家,是淘宝钻石级卖家。

诚信的承诺:交易不成,全款退还!历经6年发展,已成为行业品牌,全国连锁,总部重庆,有注册写手600人,活跃的金牌写手保持在300人,大中城市可当面交易。

真实的承诺:网络是虚假的,但我们的交易是真实!。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

头条推荐

电工技师论文100篇(电工技师论文)

电工技师论文100篇(电工技师论文)

傅晶拍了几部连续剧(傅晶吻戏)

傅晶拍了几部连续剧(傅晶吻戏)

厦门大学地址快递(厦门大学地址)

厦门大学地址快递(厦门大学地址)

2024年06月07日快讯 海关总署:前5个月民营企业进出口9.58万亿元,增长11.5%

2024年06月07日快讯 海关总署:前5个月民营企业进出口9.58万亿元,增长11.5%

2024年06月07日快讯 海关总署:前5个月我国出口机电产品5.87万亿元,增长7.9%

2024年06月07日快讯 海关总署:前5个月我国出口机电产品5.87万亿元,增长7.9%

vietnam在哪里(vietnam)

vietnam在哪里(vietnam)

快门是用来控制什么时间什么的(快门是用来控制什么)

快门是用来控制什么时间什么的(快门是用来控制什么)

魔兽版本转换器1.27+40M(魔兽版本转换)

魔兽版本转换器1.27+40M(魔兽版本转换)

联想主机编号在哪(联想主机)

联想主机编号在哪(联想主机)

加油站加油员的工作怎么样(加油站)

加油站加油员的工作怎么样(加油站)

图文推荐

全面预算管理的作用不包括(全面预算管理的作用)

全面预算管理的作用不包括(全面预算管理的作用)

镒怎么读(锆怎么读)

镒怎么读(锆怎么读)

当代书法家作品价格一览表(当代书法家)

当代书法家作品价格一览表(当代书法家)

油脂水解的最终产物是什么(油脂水解)

油脂水解的最终产物是什么(油脂水解)

乳山市房管局官网查询(乳山市房管局)

乳山市房管局官网查询(乳山市房管局)