自然数列的性质(自然数)
简单说就是大于等于零的整数。
用以计量事物的件数或表示事物次序的数 。
即用数码1,2,3,4,……所表示的数 。
自然数由1开始 , 一个接一个,组成一个无穷集合。
自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。
自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。
序数理论是意大利数学家G.皮亚诺提出来的。
他总结了自然数的性质,用公理法给出自然数的如下定义。
自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。
②N中每一个元素都能在 N 中找到一个元素作为它的后继者。
③ 1不是任何元素的后继者。
④ 不同元素有不同的后继者。
⑤(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。
基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基 数 。
这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数 , 记作1 。
类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。
自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。
“0”是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。
目前关于这个问题尚无一致意见。
不过,在数论中,多采用前者;在集合论中,则多采用后者。
目前,我国中小学教材教材将0归为自然数!。