首页 今日更新正文

什么是余弦定理概念(什么是余玄定理)

今日更新 2024-06-19 18:01:21
导读 余弦定理(第二余弦定理)  余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个...

余弦定理(第二余弦定理)  余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

  直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值余弦定理性质  对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——  a^2 = b^2+ c^2 - 2·b·c·cosA  b^2 = a^2 + c^2 - 2·a·c·cosB  c^2 = a^2 + b^2 - 2·a·b·cosC  cosC = (a^2 + b^2 - c^2) / (2·a·b)  cosB = (a^2 + c^2 -b^2) / (2·a·c)  cosA = (c^2 + b^2 - a^2) / (2·b·c)  (物理力学方面的平行四边形定则中也会用到)  第一余弦定理(任意三角形射影定理)  设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有  a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A。

余弦定理证明  平面向量证法  ∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小) ∴c·c=(a+b)·(a+b)  ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)  (以上粗体字符表示向量)  又∵cos(π-θ)=-Cosθ  ∴c2=a2+b2-2|a||b|cosθ(注意:这里用到了三角函数公式)  再拆开,得c2=a2+b2-2*a*b*CosC  即 cosC=(a2+b2-c2)/2*a*b  同理可证其他,而下面的cosC=(c2-b2-a2)/2ab就是将cosC移到左边表示一下。

平面几何证法  在任意△ABC中  做AD⊥BC.  ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a  则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c  根据勾股定理可得:  AC^2=AD^2+DC^2  b^2=(sinB*c)^2+(a-cosB*c)^2  b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2  b^2=(sinB2+cosB2)*c^2-2ac*cosB+a^2  b^2=c^2+a^2-2ac*cosB  cosB=(c^2+a^2-b^2)/2ac编辑本段作用  (1)已知三角形的三条边长,可求出三个内角  (2)已知三角形的两边及夹角,可求出第三边。

  (3)已知三角形两边及其一边对角,可求其它的角和第三条边。

(见解三角形公式,推导过程略。

)  判定定理一(两根判别法):  若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取  减号的值  ①若m(c1,c2)=2,则有两解  ②若m(c1,c2)=1,则有一解  ③若m(c1,c2)=0,则有零解(即无解)。

  注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。

  判定定理二(角边判别法):  一当a>bsinA时  ①当b>a且cosA>0(即A为锐角)时,则有两解  ②当b>a且cosA<=0(即A为直角或钝角)时,则有零解(即无解)  ③当b=a且cosA>0(即A为锐角)时,则有一解  ④当b=a且cosA<=0(即A为直角或钝角)时,则有零解(即无解)  ⑤当b0(即A为锐角)时,则有一解  ②当cosA<=0(即A为直角或钝角)时,则有零解(即无解)  三当a

  解 设三角形的三边为a,b,c且a:b:c=5:4:3.  由三角形中大边对大角可知:∠A为最大的角。

由余弦定理  cos A=0  所以∠A=90°.  再如△ABC中,AB=2,AC=3,∠A=60度,求BC之长。

  解 由余弦定理可知  BC2=AB2+AC2-2AB×AC·cos A  =4+9-2×2×3×cos60  =13-12x0.5  =13-6  =7  所以BC=√7. (注:cos60=0.5,可以用计算器算)  以上两个小例子简单说明了余弦定理的作用。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

头条推荐

2024年06月19日快讯 新点软件:拟使用1.62亿元超募资金投建大模型及数据要素项目

2024年06月19日快讯 新点软件:拟使用1.62亿元超募资金投建大模型及数据要素项目

哈佛校训20条图片(哈佛校训20条)

哈佛校训20条图片(哈佛校训20条)

consistent basis(consistent)

consistent basis(consistent)

摩纳哥和摩洛哥的区别英文(摩纳哥和摩洛哥的区别)

摩纳哥和摩洛哥的区别英文(摩纳哥和摩洛哥的区别)

昆明三九网手机报价(三九手机网昆明)

昆明三九网手机报价(三九手机网昆明)

郑州到广州高铁查询(郑州到广州高铁)

郑州到广州高铁查询(郑州到广州高铁)

游戏战歌曲(游戏战歌纯音乐)

游戏战歌曲(游戏战歌纯音乐)

是谁发送出我国第一封电子邮件(是谁发出我国第一封电子邮件)

是谁发送出我国第一封电子邮件(是谁发出我国第一封电子邮件)

便携式音响哪个牌子好(便携式音响哪个品牌好)

便携式音响哪个牌子好(便携式音响哪个品牌好)

黄加蓝是什么颜色英语(黄加蓝是什么颜色)

黄加蓝是什么颜色英语(黄加蓝是什么颜色)

图文推荐

2024年06月19日快讯 立方控股:已完成出租车交通监管平台项目的研发,正推进出租车巡网融合相关业务

2024年06月19日快讯 立方控股:已完成出租车交通监管平台项目的研发,正推进出租车巡网融合相关业务

海普诺凯1897(1897)

海普诺凯1897(1897)

工程竣工验收需要哪些资料与结算(工程竣工验收需要哪些资料)

工程竣工验收需要哪些资料与结算(工程竣工验收需要哪些资料)

应交税费年末账务处理方法(应交税费年末账务处理)

应交税费年末账务处理方法(应交税费年末账务处理)

风险评估报告怎么写利益相关方(风险评估报告怎么写)

风险评估报告怎么写利益相关方(风险评估报告怎么写)