什么是众数(什么是中位数)
众数----一组数据中出现次数最多的那个数据,叫做这组数据的众数(mode). 众数着眼于对各数据出现的次数的考察, 是一组数据中的原数据,其大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量; 注意:一组数据中的众数有时不只一个,如数据2、3、-2、l、3中,2和3都出现了2次,它们都是这组数据的众数. 中位数----把n个数据按大小顺序排列,处于最中间位置的一个数据(或)叫做这组数据的中位数(median).中位数则仅与数据排列位置有关,当一组数据从小到大排列后,最中间的数据为中位数(偶数个数据的最中间两个的平均数)。
因此某些数据的变动对它的中位数影响不大。
当一组数据中的个别数据变动较大时,可用它来描述其集中趋势 注意:(1)求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以. (2)在数据个数为奇数的情况下,中位数是这组数据中的一个数据;但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等. 在同一组数据中,众数、中位数和平均数也各有其特性: (1)中位数与平均数是唯一存在的,而众数是不唯一的; (2)众数、中位数和平均数在一般情况下是各不相等,但在特殊情况下也可能相等。
如,在数据6、6、6、6、6中,其众数、中位数、平均数都是6。
手表序号 1 2 3 4 5 6 7 8 9 10 日走时误差(秒) -2 0 2 1 -3 -1 0 2 4 -3 例如:检验某厂生产的手表质量时,检查人员随机抽取了10只手表,在下表中记下了每只手表的走时误差(正数表示比标准时间快,负数表示比标准时间慢),你认为用这10只手表误差的平均数来衡量这10只手表的精度合适吗 解:[(-2)+0+1+(-3)+(-1)+0+2+4+(-3)+2]÷10=0÷10=0 从这个平均数看,仿佛这10只手表走时非常精度,没有误差,但实际上有8只手表存在着误差,使用平均数掩盖了个别手表存在误差的事实,所以使用中位数更能反映问题 又如:为筹备班级里的联谊会,班长对全班同学爱吃哪几种水果作了民意调查最终买什么水果,请大家思考一下,该问题应由调查数据中的平均数,中位数还是众数决定呢 毫无疑问,当然由众数决定,因为各种水果喜好人数的中位数或平均都没有什么意义。