抽象函数定义域的求法(函数定义域的求法)
函数定义域的三类求法 一、给出函数解析式求其定义域,一般是先列出限制条件的不等式(组),再进行求解。
二. 给出函数的定义域,求函数的定义域,其解法步骤是:若已知函数的定义域为,则其复合函数的定义域应由不等式解得。
三. 给出的定义域,求的定义域,其解法步骤是:若已知的定义域为,则的定义域是在时的取值范围。
函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式; ②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。