1的平方加2的平方加到n的平方数学归纳法(1的平方加2的平方一直加到n的平方公式如何推导)
由1²+2²+3²+。
+n²=n(n+1)(2n+1)/6∵(a+1)³-a³=3a²+3a+1(即(a+1)³=a³+3a²+3a+1)a=1时:2³-1³=3×1²+3×1+1a=2时:3³-2³=3×2²+3×2+1a=3时:4³-3³=3×3²+3×3+1a=4时:5³-4³=3×4²+3×4+1。
a=n时:(n+1)³-n³=3×n²+3×n+1等式两边相加:(n+1)³-1=3(1²+2²+3²+。
+n²)+3(1+2+3+。
+n)+(1+1+1+。
+1)3(1²+2²+3²+。
+n²)=(n+1)³-1-3(1+2+3+。
+n)-(1+1+1+。
+1)3(1²+2²+3²+。
+n²)=(n+1)³-1-3(1+n)×n÷2-n6(1²+2²+3²+。
+n²)=2(n+1)³-3n(1+n)-2(n+1)=(n+1)[2(n+1)²-3n-2]=(n+1)[2(n+1)-1][(n+1)-1]=n(n+1)(2n+1)∴1²+2²+。
+n²=n(n+1)(2n+1)/6.。