首页 综合问答正文

一元高次不等式的解法(不等式的解法)

综合问答 2024-06-15 17:29:38
导读 重要不等式 重要不等式是常用不等式的简称 下面介绍几种重要不等式 1柯西不等式 柯西不等式的一般证法有以下几种: (1)Ca...

重要不等式 重要不等式是常用不等式的简称 下面介绍几种重要不等式 1柯西不等式 柯西不等式的一般证法有以下几种: (1)Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2. 我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2) 则我们知道恒有 f(x) ≥ 0. 用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0. 于是移项得到结论。

(2)用向量来证. m=(a1,a2......an) n=(b1,b2......bn) mn=a1b1+a2b2+......+anbn=(a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2乘以cosX. 因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^+a2^+......+an^)^1/2乘以(b1^+b2^+......+bn^)^1/2 这就证明了不等式. 柯西不等式还有很多种,这里只取两种较常用的证法. 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。

巧拆常数: 例:设a、b、c 为正数且各不相等。

求证: (2/a+c)+(2/b+c)+(2/c+a)>(9/a+b+c) 分析:∵a 、b 、c 均为正数 ∴为证结论正确只需证:2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b) 又 9=(1+1+1)(1+1+1) 证明:Θ2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]=[(a+b)+(a+c)+(b+c)][1/a+b)+(1/b+c)+(1/c+a)]≥(1+1+1)(1+1+1)=9 又 a、b 、c 各不相等,故等号不能成立 ∴原不等式成立。

像这样的例子还有很多,词条里不再一一列举,大家可以在参考资料里找到柯西不等式的证明及应用的具体文献. 2排序不等式 排序不等式是高中数学竞赛大纲要求的基本不等式。

设有两组数 a 1 , a 2 ,…… a n, b 1 , b 2 ,…… b n 满足 a 1 ≤ a 2 ≤……≤ a n, b 1 ≤ b 2 ≤……≤ b n 则有 a 1 b n + a 2 b n−1 +……+ a n ≤ a 1 b t + a 2 b t +……+ a n b t ≤ a 1 b 1 + a 2 b 2 + a n b n 式中t1,t2,……,tn是1,2,……,n的任意一个排列, 当且仅当 a 1 = a 2 =……= a n 或 b 1 = b 2 =……= b n 时成立。

以上排序不等式也可简记为: 反序和≤乱序和≤同序和. 证明时可采用逐步调整法。

例如,证明:其余不变时,将a 1 b 1 + a 2 b 2 调整为a 1 b 2 + a 2 b 1 ,值变小,只需作差证明(a 1 -a 2 )*(b 1 -b 2 )≥0,这由题知成立。

依次类推,根据逐步调整法,排序不等式得证。

3切比雪夫不等式 切比雪夫不等式有两个 (1)设存在数列a1,a2,a3.....an和b1,b2,b3......bn满足a1≤a2≤a3≤.....≤an和b1≤b2≤b3≤......≤bn 那么,∑aibi≥(1/n)(∑ai)(∑bi) (2)设存在数列a1,a2,a3.....an和b1,b2,b3......bn满足a1≤a2≤a3≤.....≤an和b1≥b2≥b3≥......≥bn 那么,∑aibi≤(1/n)(∑ai)(∑bi) 4 琴生不等式 设f(x)为上凸函数,则f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n,称为琴生不等式(幂平均)。

加权形式为: f[(a1x1+a2x2+……+anxn)]≥a1f(x1)+a2(x2)+……+anf(xn),其中 ai>=0(i=1,2,……,n),且a1+a2+……+an=1. 5均值不等式 a^2 + b^2≥ 2ab (a与b的平方和不小于它们的乘积的2倍) 当a,b 分别大于0时上试可变为a+b ≥2√ab 完全的均值不等式: √[(a^2+ b^2)/2] ≥(a+b)/2 ≥√ab ≥2/(1/a+1/b) (二次幂平均≥算术平均≥几何平均≥调和平均) 证明:(证明过程引自他出) 设a,b是两个正数, M2=√[(a^2+b^2)/2],A=(a+b)/2,G=√(ab),H=2/(1/a+1/b) 分别表示a,b两元的二次幂平均,算术平均,几何平均和调和平均。

证明: M2≥A≥G≥H。

证明 在梯形ABCD中,AB‖CD,记AB=b,CD=a。

EiFi(i=1,2,3,4)是平行于梯形ABCD的底边且被梯形两腰所截的线段。

如果E1F1分梯形为等积的两部分,那么 E1F1=√[(a^2+b^2)/2]。

如果E2F2分梯形的中位线,那么 E2F2=(a+b)/2。

如果E3F3分梯形为两相似图形,那么 E3F3=√(ab)。

如果E4F4通过梯形两对角线交点的线段,那么 E4F4=2/(1/a+1/b)。

从图中直观地证明E1F1≥E2F2≥E3F3≥E4F4,当a=b时取等号。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

头条推荐

zip code中国5位数(zipcode)

zip code中国5位数(zipcode)

昆仑镜之忆攻略5开1星(昆仑镜之忆武力恐吓火把怎么丢)

昆仑镜之忆攻略5开1星(昆仑镜之忆武力恐吓火把怎么丢)

一件有趣的事作文400字(一件有趣的事作文)

一件有趣的事作文400字(一件有趣的事作文)

无言独西楼月如钩寂寞梧桐深院锁清秋(月如钩寂寞梧桐深院锁清秋)

无言独西楼月如钩寂寞梧桐深院锁清秋(月如钩寂寞梧桐深院锁清秋)

布雷尔利1908手表怎么样(布雷尔利)

布雷尔利1908手表怎么样(布雷尔利)

张小菲个人资料简介(张小菲)

张小菲个人资料简介(张小菲)

空调内机结冰什么原因怎么解决(空调结冰)

空调内机结冰什么原因怎么解决(空调结冰)

杨氏之子的回答妙在哪里10字(杨氏之子的回答妙在哪里)

杨氏之子的回答妙在哪里10字(杨氏之子的回答妙在哪里)

苗族服饰的特点(苗族服饰)

苗族服饰的特点(苗族服饰)

excel填充功能在哪里(excel填充功能)

excel填充功能在哪里(excel填充功能)

图文推荐

一元高次不等式的解法(不等式的解法)

一元高次不等式的解法(不等式的解法)

有趣的事作文400字四年级(有趣的事作文)

有趣的事作文400字四年级(有趣的事作文)

蓬莱到大连船票时刻表(大连到威海的船票时刻表)

蓬莱到大连船票时刻表(大连到威海的船票时刻表)

祝你生日快乐歌下载mp3(祝你生日快乐歌曲免费下载)

祝你生日快乐歌下载mp3(祝你生日快乐歌曲免费下载)

自相矛盾的寓言故事(掩耳盗铃的意思)

自相矛盾的寓言故事(掩耳盗铃的意思)