首页 > 学识问答 >

什么是基数效用论(什么是基数)

发布时间:2024-06-20 22:31:15来源:

在数学上,基数(cardinal number)是集合论中刻画任意集合大小的一个概念。

两个能够建立元素间一一对应的集合称为互相对等集合。

例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。

根据对等这种关系对集合进行分类,凡是互相对等的集合就划入同一类。

这样,每一个集合都被划入了某一类。

任意一个集合A所属的类就称为集合A的基数,记作(或|A|,或cardA)。

这样,当A 与B同属一个类时,A与B 就有相同的基数,即|A|=|B|。

而当 A与B不同属一个类时,它们的基数也不同。

如果把单元素集的基数记作1,两个元素的集合的基数记作2,等等,则任一个有限集的基数就与通常意义下的自然数一致 。

空集的基数也记作0。

于是有限集的基数也就是传统概念下的“个数”。

但是,对于无穷集,传统概念没有个数,而按基数概念,无穷集也有基数,例如,任一可数集(也称可列集)与自然数集N有相同的基数,即所有可数集是等基数集。

不但如此,还可以证明实数集R与可数集的基数不同。

所以集合的基数是个数概念的推广。

基数可以比较大小。

假设A,B的基数分别是a,β,即|A|=a,|B|=β,如果A与B的某个子集对等,就称 A 的基数不大于B的基数,记作a≤β,或β≥a。

如果 a≤ β,但a≠β( 即A与B不对等 ),就称A的基数小于B的基数,记作a<β,或β>a。

在承认选择公理的情况下,可以证明基数的三歧性定理——任何两个集合的基数都可以比较大小,即不存在集合A和B,使得A不能与B的任何子集对等,B也不能与A的任何子集对等。

基数可以进行运算 。

设|A|=a ,|B|=β,定义 a+β=|{(a,0):a ∈ A} ∪ {(b,1):b ∈ B}|。

另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。

免责声明:本答案或内容为用户上传,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 如遇侵权请及时联系本站删除。