首页 综合问答正文

1~100的素数表(素数有哪些)

综合问答 2024-06-25 13:00:33
导读 素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6...

素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。

例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。

另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。

有的数,如果单凭印象去捉摸,是无法确定它到底是不是素数的。

有些数则可以马上说出它不是素数。

一个数,不管它有多大,只要它的个位数是2、4、5、6、8或0,就不可能是素数。

此外,一个数的各位数字之和要是可以被3整除的话,它也不可能是素数。

但如果它的个位数是3、7或9,而且它的各位数字之和不能被3整除,那么,它就可能是素数(但也可能不是素数)。

没有任何现成的公式可以告诉你一个数到底是不是素数。

你只能试试看能不能将这个数表示为两个比它小的数的乘积。

找素数的一种方法是从2开始用“是则留下,不是则去掉”的方法把所有的数列出来(一直列到你不想再往下列为止,比方说,一直列到10,000)。

第一个数是2,它是一个素数,所以应当把它留下来,然后继续往下数,每隔一个数删去一个数,这样就能把所有能被2整除、因而不是素数的数都去掉。

在留下的最小的数当中,排在2后面的是3,这是第二个素数,因此应该把它留下,然后从它开始往后数,每隔两个数删去一个,这样就能把所有能被3整除的数全都去掉。

下一个未去掉的数是5,然后往后每隔4个数删去一个,以除去所有能被5整除的数。

再下一个数是7,往后每隔6个数删去一个;再下一个数是11,往后每隔10个数删一个;再下一个是13,往后每隔12个数删一个。

……就这样依法做下去。

你也许会认为,照这样删下去,随着删去的数越来越多,最后将会出现这样的情况;某一个数后面的数会统统被删去崮此在某一个最大的素数后面,再也不会有素数了。

但是实际上,这样的情况是不会出现的。

不管你取的数是多大,百万也好,万万也好,总还会有没有被删去的、比它大的素数。

事实上,早在公元前300年,希腊数学家欧几里得就已证明过,不论你取的数是多大,肯定还会有比它大的素数,假设你取出前6个素数,并把它们乘在一起:2*3*5*7*11*13=30030,然后再加上1,得30031。

这个数不能被2、3、5、7、113整除,因为除的结果,每次都会余1。

如果30031除了自己以外不能被任何数整除,它就是素数。

如果能被其它数整除,那么30031所分解成的几个数,一定都大于13。

事实上,30031=59*509。

对于前一百个、前一亿个或前任意多个素数,都可以这样做。

如果算出了它们的乘积后再加上1,那么,所得的数或者是一个素数,或者是比所列出的素数还要大的几个素数的乘积。

不论所取的数有多大,总有比它大的素数,因此,素数的数目是无限的。

随着数的增大,我们会一次又一次地遇到两个都是素数的相邻奇数对,如5,7;11,13;17,19;29,31;41,43;等等。

就数学家所能及的数来说,它们总是能找到这样的素数对。

这样的素数对到底是不是有无限个呢?谁也不知道。

数学家认为是无限的,但他们从来没能证明它。

这就是数学家为什么对素数感兴趣的原因。

素数为数学家提供了一些看起来很容易、但事实却非常难以解决的问题,他们目前还没能对付这个挑战哩。

这个问题到底有什么用处呢?它除了似乎可以增添一些趣味以外,什么用处也没有。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

头条推荐

泳裤在什么店买(泳裤)

泳裤在什么店买(泳裤)

爱荷华大学qs世界排名(爱荷华大学)

爱荷华大学qs世界排名(爱荷华大学)

火龙鱼吃什么饲料(火龙鱼)

火龙鱼吃什么饲料(火龙鱼)

造价工程师报名时间2024年(造价师通过率)

造价工程师报名时间2024年(造价师通过率)

宝一中科技新城校区(宝一中)

宝一中科技新城校区(宝一中)

女娲炼石 石破天惊逗秋雨(女娲炼石补天处石破天惊逗秋雨)

女娲炼石 石破天惊逗秋雨(女娲炼石补天处石破天惊逗秋雨)

oct检查孕妇(oct检查)

oct检查孕妇(oct检查)

免费结缘念佛机

免费结缘念佛机

游白水书付过苏轼翻译(游白水书付过翻译)

游白水书付过苏轼翻译(游白水书付过翻译)

2024年06月25日快讯 瑞纳智能:子公司中标2.06亿元AI智慧供热合同能源管理项目

2024年06月25日快讯 瑞纳智能:子公司中标2.06亿元AI智慧供热合同能源管理项目

图文推荐

西安交大附中航天学校(西安交大附中)

西安交大附中航天学校(西安交大附中)

他日若遂凌云志 敢笑黄巢不丈夫下一句是什么(他日若遂凌云志敢笑黄巢不丈夫什么意思)

他日若遂凌云志 敢笑黄巢不丈夫下一句是什么(他日若遂凌云志敢笑黄巢不丈夫什么意思)

交银成长519692分红公告(交银成长)

交银成长519692分红公告(交银成长)

斗罗大陆免费网站

斗罗大陆免费网站

三喜一弊疏(三喜)

三喜一弊疏(三喜)